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Quantum chemistry of macromolecular shape

by PAUL G. MEZEY

M athematical Chemistry Research Unit, Department of Chemistry and

Department of Mathematics and Statistics, University of Saskatchewan,

110 Science Place, Saskatoon, SK, Canada, S7N 5C9

Some of the new developments in the quantum-chemical study of macromol-

ecular shapes are reviewed, with special emphasis on the additive fuzzy electron

density fragmentation methods and on the algebraic-topological shape group
analysis of global and local shape features of fuzzy three-dimensional bodies of

electron densities of macromolecules. Earlier applications of these methods to

actual macromolecules are reviewed, including studies on the anticancer drug
taxol, the proteins bovine insulin and HIV protease, and other macromolecules.

The results of test calculations establishing the accuracy of these methods are also

reviewed. The spherically weighted a� ne transformation technique is described
and proposed for the deformation of electron densities approximating the changes

occurring in small conformational displacements of atomic nuclei in macro-

molecules.

1. Introduction

During the recent decades, quantum chemistry methods have provided un-

precedented insight into the properties and behaviour of small molecules. In several

areas of research the accuracy of quantum-chemical computational techniques

compare well and even exceed the accuracy of experimental methods. Furthermore,

modern quantum chemistry allows one to study many molecular problems where

experimental information is not available. The development of some of the

fundamental computational methods of quantum chemistry [1 ± 10] and various

experimental and theoretical studies on electron densities [11 ± 24] have contributed to

the evolution of the basic concepts of chemistry. The computational methodologies,

primarily the Hartree± Fock ± Roothaan± Hall molecular orbital technique [1 ± 4, 10],

various related methods developed for the treatment of electron correlation and, more

recently, some of the computational techniques based on density functional methods

[25 ± 47], have become accessible to all chemists with a state-of-the-art desktop

computer.

Whereas the early methodologies were rather limited to small molecules, some new

developments in the representation of electronic densities and related properties of

macromolecules allow an extension of many of the quantum chemistry approaches to

large systems, including proteins. In this report a particular approach, the additive

fuzzy density fragmentation (AFDF) method [48 ± 52] is reviewed, where the emphasis

is on electronic density obtained within the molecular orbital framework, but without

the actual determination of a macromolecular wavefunction. This method can be

applied for the construction of approximate macromolecular electron densities,

density matrices, approximate energy relations, and approximate macromolecular

forces.

The emphasis on electronic density q (r), as opposed to a molecular wavefunction

W , is motivated by both fundamental quantum-chemical as well as practical

computational considerations.
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362 P. G . M ezey

Electronic density is an observable, whereas a molecular wavefunction is only a

quantum-mechanical tool. Electron density is reality, whereas a wavefunction is only a

formal `square root ’ of reality. In a molecule there is nothing else but a nuclear

distribution and an electron distribution. It appears sensible to focus on the actual

physical entity, electron density, that describes fully the molecular shape and also

re¯ ects the actual nuclear arrangement. All information concerning a given molecular

conformation is contained in the electron density.

From the practical computational perspective, molecular electron densities have

`nicer ’ properties than molecular wavefunctions. The exponential convergence of q (r)

to zero is very rapid with the distance from the nearest nucleus. Furthermore, using the

AFDF approach, the electronic density q (r) can be decomposed into fuzzy electron

density fragments in an exactly additive manner, while preserving the same rapid

convergence properties. By contrast, the molecular wavefunction W has less uniform

convergence properties and W is not easily decomposable in a strictly additive manner

into `local wavefunctions’ representing molecular fragments.

The macromolecular quantum chemistry methods based on the AFDF approach

also provide the tools for the extension of earlier quantum-chemical shape analysis

methods to large molecules, including proteins.

In section 2, the main concepts and methods of the application of the AFDF

approach are described brie¯ y, including the results of numerical tests establishing the

accuracy of the approximations employed. These tests indicate that the AFDF

methodology is suitable for providing ab initio quality results at a fraction of the

computational cost of conventional calculations. Several earlier macromolecular

applications are reviewed, including studies on various polypeptides, the proteins

bovine insulin and HIV protease, and other macromolecules such as the anticancer

drug taxol [53± 57].

The AFDF methods described in this section include the molecular electron

density loge assembler (MEDLA) method [53± 59], the adjustable density matrix

assembler (ADM A) techniques [50, 52, 60 ± 63], the ADMA± FORCE approach to

macromolecular forces [61, 62], as well as the related quantum-chemical represent-

ations of local molecular moieties, such as functional groups [64 ± 67].

In section 3, an auxiliary technique is described, suitable for the calculation of

small deformations of approximate electron densities of macromolecules. This

technique, the spherically weighted a� ne transformation (SW AT) method [68], is

suggested for the rapid estimation of macromolecular electron densities if an electron

density is available for a macromolecular nuclear arrangement only slightly diŒerent

from the actual conformation considered.

In section 4, the shape group method (SGM ), an earlier quantum-chemical shape

analysis technique [65, 69 ± 73] is extended to large systems, with emphasis on the global

features of macromolecular electron densities and on the detailed shapes of their local

regions.

2. Additive fuzzy density fragmentation and density matrix assembler methods

We shall use the q (r, K ) notation for the self-consistent ® eld (SCF) linear-

combination-of-atomic orbitals (LCAO) ab initio electronic density of a molecule

taken at some ® xed nuclear conformation K , where r is the three-dimensional position

vector variable. Using the conventional Hartree± Fock± Roothaan ± Hall formalism, we

assume that this electron density is expressed in terms of a basis set } (K ) of atomic

orbitals }
i
(r, K ) (i ¯ 1, 2, ¼ , n) used for the expansion of the molecular wavefunction,
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Quantum chemistry of macromolecular shape 363

Figure 1. Example of a large molecule M and three nuclear families f
i
, f

j
and f

k
, serving as

`anchor points’ for fuzzy electron density fragments F
i
(K ), F

j
(K ) and F

k
(K ) respectively.

These local fragment densities correspond to that of an NH
#

group, and two CH
#

groups,
where the latter two groups diŒer as a consequence of their diŒerent local surroundings.

where n is the number of orbitals. Note that the location of basis functions is

dependent on the nuclear con® guration K , and this dependence is explicitly indicated

in the notation. The n ¬ n dimensional density matrix determined for the given nuclear

con® guration K is noted P ( } (K )). The corresponding electronic density q (r, K ) is

computed as

q (r, K ) ¯ 3
n

i= "

3
n

j= "

P
ij
( } (K )) }

i
(r, K ) }

j
(r, K ). (1)

This equation provides a natural introduction for the AFDF principle [48 ± 52] that,

in turn, provides the basis for generating `assembled ’ electron densities [53 ± 59] and

`assembled ’ density matrices [50, 52, 60 ± 63].

2.1. The additive fuzzy density fragmentation principle

The simplest illustration as well as implementation of the AFDF principle is the

M ulliken± M ezey scheme [48± 52], that is the approach used in the MEDLA method of

W alker and M ezey [53 ± 57] as well as in the ADM A macromolecular density matrix

method of M ezey [50, 52, 60 ± 63]. This fuzzy density fragmentation approach has been

motivated by M ulliken’ s [5, 6] population analysis and charge assignment scheme.

The basis of the general Mulliken± M ezey AFDF scheme is a subdivision of the set

of nuclei of the molecule M into m mutually exclusive families denoted by f
"
, f

#
, ¼ , f

k
,

¼ , f
m

. These nuclear families serve as reference and as formal `anchor ’ points for a set

of m fragment density functions q " (r, K ), q # (r, K ), ¼ , q k(r, K ), ¼ , q m(r, K ). These

density functions correspond to the actual additive fuzzy density fragments F
"
(K ),

F
#
(K ), ¼ , F

k
(K ), ¼ , F

m
(K ).

These ideas are illustrated by the example of a `macromolecule ’ M shown in ® gure

1. Only three of the nuclear families are highlighted, families f
i
, f

j
and f

k
, serving as

`anchor points ’ for fuzzy electron density fragments F
i
(K ), F

j
(K ) and F

k
(K )

respectively. These fragment densities correspond to that of a NH
#

group, and two

CH
#

groups, where the latter two have diŒerent local surroundings.

In order to generate local fuzzy electron densities assigned to nuclear families
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364 P. G . M ezey

within an additive density fragmentation scheme, it is convenient to de® ne a formal

membership function m
k
(i) which indicates, if a given atomic orbital (AO) basis

function }
i
(r, K ) belongs to the set of AOs centred on a nucleus of family f

k
,

m
k
(i) ¯

1

2
3

4

1 if AO }
i
(r) is centred on one of the nuclei of set f

k
,

0 otherwise.
(2)

Within the general M ulliken ± Mezey AFDF scheme [48± 52] the elements P k
ij
( } (K ))

of the n ¬ n fragment density matrix P k( } (K )) of the kth fragment F
k
(K ) are de® ned as

P k
ij
( } (K )) ¯ [m

k
(i) w

ij
­ m

k
( j) w

ji
] P

ij
( } (K )), (3)

where for the w
ij

and w
ji

weighting factors

w
ij
­ w

ji
¯ 1, w

ij
, w

ji
" 0, (4)

hold. In the simplest version of the Mulliken± M ezey AFDF scheme the choice w
ij

¯
w

ji
¯ 0 ± 5 is taken, that is

P k
ij
( } (K )) ¯ 0 ± 5[m

k
(i) ­ m

k
( j)] P

ij
( } (K )). (5)

This density matrix `fragmentation ’ formula represents an approach equivalent to

M ulliken’ s [5, 6] population analysis without integration, providing a justi® cation for

the terminology. Based on the more general scheme of equations (3) and (4),

alternative choices for the weighting schemes have also been proposed [48± 52].

Note that, for each index pair (i, j) the elements P k
ij
( } (K )) of the AFDF fragment

density matrices P k( } (K )) are strictly additive :

P
ij
( } (K )) ¯ 3

m

k= "

P k
ij
( } (K )). (6)

Consequently, the AFDF fragment density matrices P k( } (K )) are also strictly additive

and their sum is the density matrix P ( } (K )) of the molecule M :

P ( } (K )) ¯ 3
m

k= "

P k( } (K )). (7)

Using these fragment density matrices P k( } (K )), the additive fuzzy density fragments

q k(r, K ) are de® ned as

q k(r, K ) ¯ 3
n

i= "

3
n

j= "

P k
ij
( } (K )) }

i
(r, K ) }

j
(r, K ), k ¯ 1, 2, ¼ , m . (8)

According to equation (1), the molecular electron density q (r, K ) depends linearly

on the matrix elements P
ij
( } (K )) ; consequently, the exact additivity properties (6) and

(7) for the fragment density matrices P k(K ) expressed with reference to basis set } (K )

imply that the q k(r, K ) fuzzy fragment densities are, indeed, additive, and their sum is

equal to the density q (r, K ) of the molecule M of nuclear con® guration K :

q (r, K ) ¯ 3
m

k= "

q k(r, K ). (9)

Equation (9) provides a valid realization of an AFDF scheme.

The individual fuzzy fragment densities q k(r, K ) can be used for a local shape

analysis of molecular moieties and functional groups [64 ± 67].

Another important application of this AFDF scheme is in the construction of

approximate electron densities of large molecules. If the size of a large molecule, for

example a protein, renders a direct application of the Hartree± Fock ± Roothaan± Hall

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Quantum chemistry of macromolecular shape 365

method impractical, then the AFDF approach can be used to circumvent the

di� culties.

The ® rst step is the classi® cation of the nuclei of the large molecule M , referred to

as the `target molecule ’ , into m mutually exclusive nuclear families f
"
, f

#
, ¼ , f

k
, ¼ , f

m
.

Our goal is to generate a family of fuzzy density fragments F
"
(K ), F

#
(K ), ¼ , F

k
(K ), ¼ ,

F
m

(K ), with `anchor points ’ the respective nuclear families, where a simple super-

position of these fuzzy density fragments provides an approximation to the

macromolecular electron density of M .

Such fuzzy fragment densities F
k

of M can be computed indirectly, if the AFDF

scheme is applied to standard Hartree ± Fock or post-Hartree ± Fock electron densities

obtained for a set of m small `parent ’ molecules M
"
, M

#
, ¼ , M

k
, ¼ , M

m
, where each

parent molecule M
k

contains the respective nuclear family f
k

with the same local

nuclear geometry and the same local surroundings as they are found in the large target

molecule M .

These ideas are illustrated in ® gure 2, where only three of the `parent ’ molecules M
i

¯ M (F
i
), M

j
¯ M (F

j
) and M

k
¯ M (F

k
) of the `target ’ molecule M of ® gure 1 are

shown. Within these parent molecules, the local arrangements and local surroundings

of nuclear families f
i
, f

j
and f

k
are the same as found in the large `target ’ molecule M

shown in ® gure 1. The AFDF technique can be applied to the Hartree± Fock electron

densities of the small parent molecules, using a fragmentation where within each

parent molecule M
k

¯ M (F
k
) the respective nuclear family f

k
is identi ® ed as an actual

set of `anchor points ’ . If each fuzzy electron density fragment F
k

is taken from the

respective parent molecule M
k

¯ M (F
k
), then, by superimposing all these fragments,

an approximate macromolecular electron density of target molecule M is obtained.

Evidently, the accuracy of this approach depends on the reproducibility of the

local surroundings of each macromolecular density fragment within the parent

molecules, which can be improved to any desired accuracy by increasing the size of the

parent molecules.

In practice, a high-quality ab initio calculation is carried out for a `custom-made ’

model of a parent molecule M
k

that contains the density fragment F
k
(K

k
) within local

surroundings that matches the local surroundings of fragment F
k
(K ) of the target

molecule M within a large enough `coordination shell ’ . The actual nuclear

con® guration K of macromolecular fragment F
k
(K ) as well as its coordination shell are

exactly reproduced by the nuclear con ® guration K
k

and the coordination shell of the

density fragment F
k
(K

k
) within the `custom-made ’ parent molecule M

k
. Detailed test

calculations have con® rmed [53, 54, 57] that, in practice, a coordination shell of 4± 5 A/
thickness in each parent molecule is su� cient to generate local fragment electron

densities at a level of accuracy that reproduces the results of conventional 6-31G** ab

initio calculations of a target molecule M better than conventional ab initio calculations

using smaller Gaussian basis sets such as 6-31G [57].

Although the method is rather simple, its accuracy is not surprising ; all the local

interactions within the fuzzy density fragment F
k

and between the density fragment

and the surrounding coordination shell within the macromolecule M and within the

small parent molecule M
k

are identical. Consequently, the fuzzy fragment electron

density q k(r, K
k
) obtained for fragment F

k
by a high-quality ab initio calculation for the

`custom-made ’ small parent molecule M
k

is a good approximation of the density q k(r,

K ) of fragment F
k

in the large molecule M . Both fragment electron densities q k(r, K
k
)

and q k(r, K ) decrease exponentially with the distance from the nearest nucleus of the

nuclear family f
k

(in the actual calculations, this exponential decay is approximated by

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



366 P. G . M ezey

Figure 2. Three of the `parent ’ molecules M
i
¯ M(F

i
), M

j
¯ M(F

j
), and M

k
¯ M(F

k
) of the

`target ’ molecule M of ® gure 1 are shown. The local arrangements and local surroundings

of nuclear families f
i
, f

j
and f

k
, within parent molecules M(F

i
), M(F

j
) and M (F

k
)

respectively are the same as in the target molecule M shown in ® gure 1. After computing

the Hartree± Fock electron densities of these small parent molecules, within each parent

molecule M
k

¯ M(F
k
) the respective nuclear family f

k
can be selected as an actual set of
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Quantum chemistry of macromolecular shape 367

multiple Gaussian functions). The method ensures a high degree of similarity between

these fragment densities even if the matching surroundings are rather limited in size.

A series of numerical tests of the simplest M ulliken± M ezey scheme has shown a high

degree of similarity between electron densities computed using conventional ab initio

techniques and methods based on the AFDF principle [53, 54, 57]. The actual

deviation between q k(r, K
k
) and q k(r, K ) can be reduced to less than any small positive

threshold ; the accuracy of the method can be controlled by taking a large enough

`coordination shell ’ of matching surroundings within the parent molecule M
k
.

Whereas for the M EDLA approach no restriction on basis set orientation is

required, for a concise discussion of the M EDLA and ADM A methods, we assume

that the electron densities of the large target and small parent molecules are represented

by wavefunctions which are expressed using identical AO basis functions centred on

corresponding nuclei. Also note that, for the actual target molecule M , no such

wavefunction is calculated ; however, the macromolecular density matrix that is

constructed for M by the ADM A technique is compatible with such a wavefunction.

2.2. The molecular electron density ` loge ’ assembler method

The ® rst practical implementation of the AFDF scheme for the construction of

macromolecular electron densities was the M EDLA method (also referred to as

molecular electron density `lego ’ assembler) of Walker and Mezey [53± 57], using a

numerical electron density fragment database of pre-calculated custom-made electron

density fragments. As numerous tests have demonstrated [53, 54, 57], the M EDLA

method produces ab initio quality, in fact, nearly 6-31G** quality electron densities for

large molecules. In particular, the test results justify the claim of `ab initio quality ’ .

In these tests [53, 54, 57], the electron densities of several molecules of moderate

size were computed both by traditional ab initio methods and by the AFDF approach,

using fragments from smaller parent molecules. The electron density results of the

conventional ab initio Hartree± Fock ± Roothaan± Hall SCF method using Gaussian

basis sets ranging from STO 3G to 6-31G** were compared with one another and with

the AFDF results obtained using the M EDLA method with fragments generated from

6-31G** calculations of the smaller parent molecules.

Speci® c tests included the following:

(a) detailed comparisons of electron densities obtained for the amino acid b -

alanine [53] ;

(b) detailed comparisons of electron densities obtained for the model peptide

system of glycyl-alanine [54] ;

(c) test of the reproducibility of the electron density of a hydrogen bond in a

helical tetrapeptide [54] ;

(d ) test of the reproducibility of a nonbonded interaction between a sulphur atom

and a phenyl ring in a molecular fragment from the pentapeptide meten-

kephalin [54] ;

(e) test of reproducibility of aromatic rings and substituent eŒects in a series of

aromatic molecules [57].

`anchor points’ . By applying the AFDF technique and by taking each fuzzy electron
density fragment F

k
from the respective parent molecule M

k
¯ M(F

k
), a simple

superposition of all these fuzzy density fragments leads to an approximate macro-

molecular electron density of target molecule M .
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368 P. G . M ezey

The conventional ab initio Hartree± Fock± Roothaan± Hall SCF results at the 6-

31G** basis set level were used as reference, since this was the basis set used for the

generation of fuzzy density fragments. Clearly, an AFDF technique using density

fragments obtained at the 6-31G** level cannot be expected to perform better than a

direct application of the conventional ab initio method at the same basis set level.

In all these tests, the M EDLA method performed consistently better than

conventional ab initio computations at any of the basis set levels tested except 6-

31G**, the level used as reference. Comparisons included direct point-by-point

comparisons throughout three-dimensional density grids, as well as integrated

similarity measures such as the Carbo! quantum similarity index [57]. According to

these test results, the claim of `ab initio quality ’ is justi® ed.

The AFDF methodology was applied to calculate ab initio quality electron

densities for a series of macromolecules [54 ± 56]. Justi® ed by their exceptional

biochemical importance, emphasis was placed on amino acids, peptides and proteins

[54 ± 56]. In particular, the computation of the electron densities of several proteins was

completed, including crambin [54], bovine insulin [55], the gene-5 protein (g5p) of

bacteriophage M 13 [54], and the HIV-1 protease monomer, a protein of 1564 atoms

in 99 amino acid residues [56]. These macromolecular electron densities have been

calculated at the M EDLA 6-31G** level, that is using fragment densities obtained

from custom-made parent molecules at the standard ab initio 6-31G** level. The

resolution of the calculated electron densities exceeds the resolution of current

experimental techniques, such as X-ray crystallography, by about two orders of

magnitude. The MEDLA method serves as a `computational microscope ’ , providing

detailed images of the fuzzy bodies of large molecules in any desired conformation.

2.3. The adjustable density matrix assembler method

The ADM A method is a more advanced application of the AFDF approach,

which focuses on the fragment density matrices P k( } (K
k
)). The ADMA technique does

not require a numerical fragment density database ; only a more concise database of

the fragment density matrices and basis set information are needed. If for the various

fragment density matrices a mutual compatibility condition is satis® ed, then these

matrices can be assembled into an approximate macromolecular density matrix

P ( } (K )), which represents the same level of accuracy as a M EDLA numerical electron

density generated on an ideal in ® nite-resolution grid. The macromolecular density

matrix, combined with the basis set information, can be used for the computation of

electron densities, and macromolecular density matrices are advantageous if our goal

is the estimation of molecular properties other than electron density.

Within the general AFDF scheme, the mutual compatibility requirements for a

family of additive fragment density matrices P k( } (K
k
)) obtained from small parent

molecules M
k

involves two additional conditions.

(a) Fragment AO basis set orientation condition. All the fragment density matrices

P k( } (K
k
)) should refer to local coordinate systems where the coordinate axes are

parallel to and have the same orientation as the reference axes of a common

macromolecular coordinate system .

(b) Compatible target± parent fragmentation condition. If the set of nuclei of the

target molecule M are classi® ed into m families, f
"
, f

#
, ¼ , f

k
, ¼ , f

m
, then each

parent molecule M
k

may contain only complete nuclear families f
k « from the large

target molecule M .
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Quantum chemistry of macromolecular shape 369

Condition (a) can always be satis® ed by a simple similarity transformation of a

fragment density matrix P k( } (K
k
)) using a suitable orthogonal transformation matrix

T(k) of the AO sets.

Similarly, condition (b) can also be satis® ed for any target macromolecule M , by

an appropriate choice of nuclear families f
k

for the various fragments and by a suitable

choice of the `coordination shells ’ of parent molecules M
k
.

The general AFDF approach, combined with the two mutual compatibility

conditions, is referred to as the M C-AFDF approach. These conditions imply that the

AO basis functions centred at nuclei of a family f
k

are the same in all parent molecules

where family f
k

occurs, independently of the role of f
k

as the central family or a family

in the `coordination shell ’ within the parent molecule M
k
.

In some of the parent molecules, the peripheral regions of the coordination shells

may have some `dangling bonds ’ ; in these cases the parent molecule M
k

may contain

some additional peripheral hydrogen nuclei (or possibly other nuclei) linked to these

formal bonds. For each parent molecule M
k
, the AOs centred on these extra nuclei are

listed at the end of the AO list of the local basis set. Since these extra nuclei are at large

distances from the `central ’ nuclear set f
k
, their eŒect on the actual fragment density

q k(r, K
k
) is negligible. Consequently, all contributions of the AOs of the additional,

peripheral nuclei to the fragment density matrix P k( } (K
k
)) are ignored, and the

corresponding rows and columns of the actual parent molecule density matrix P (K
k
)

are not included in the fragment density matrix P k( } (K
k
)). That is, the contribution of

the fragment density matrix P k( } (K
k
)) to the generalized M ulliken± M ezey M C-AFDF

scheme of the ADM A method involves only the orbital indices of the `central ’ nuclear

set f
k

and the complete nuclear sets f
k « which are part of the coordination shell used to

reproduce the local macromolecular surroundings of set f
k

within the parent molecule

M
k
.

The implementation of the M C-AFDF scheme of the ADMA method involves

extensive index manipulation of various fragment density matrix contributions.

We denote the number of AOs in the nuclear families f
"
, f

#
, ¼ , f

k
, ¼ , and f

m
of the

target macromolecule M by n
"
, n

#
, ¼ , n

k
, ¼ , and n

m
respectively. For each pair ( f

k
, f

k « )

of nuclear families the quantity

c
k « k

¯
1

2
3

4

1, if nuclear family f
k « is present in parent molecule M

k
,

0 otherwise,
(10)

is de® ned. For each AO, } (r) three types of index notation are used. If the serial

number of } (r) is b in the AO set

² }
a, k « (r) ´ nk «

a= "
(11)

of nuclear family f
k « , then the notation }

b,k « (r) is used. W ith reference to the fragment

density matrix P k( } (K
k
)), the jth AO of the basis set

² } k
i
(r) ´ nPk

i= "
(12)

of the kth fragment density matrix P k( } (K
k
))is denoted by } k

j
(r), where the total

number of these AOs is denoted by n
Pk :

n
Pk ¯ 3

m

k « = "

c
k « k

n
k « . (13)

W ith reference to the macromolecular density matrix P (K ), the AO of serial index y

in the AO set
² }

x
(r) ´ n

x= "
(14)
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370 P. G . M ezey

of the density matrix P (K ) of the target macromolecule M is denoted by }
y
(r). For

each AO,

}
a, k « (r) ¯ } k

i
(r) ¯ }

x
(r), (15)

the index x is determined by the index a in family k « as follows :

x ¯ x(k « , a, f ) ¯ a ­ 3
k «

Õ "

b= "

n
b
, (16)

where the symbol f in x(k « , a, f ) indicates that k « and a refer to a nuclear family.

From the element index i and serial index k of fragment density matrix P k( } (K
k
)),

the index x can be determined as follows. Three quantities are de® ned for each index

k and nuclear family f
k § for which c

k § k
1 0 :

a «
k
(k § , i) ¯ i ® 3

k §

b= "

n
b
c

bk
, (17)

k « ¯ k « (i, k) ¯ min ² k § :a «
k
(k § , i) % 0 ´ (18)

and

a
k
(i) ¯ a «

k
(k « , i) ­ n

k « . (19)

The AO index x ¯ x(k, i, P) in the density matrix P (K ) of target molecule M is

determined from indices i and k using index k « and the function x(k « , a, f ) :

x ¯ x(k, i, P) ¯ x(k « , a
k
(i), f ). (20)

Here the distinguishing symbol P in the index function x(k, i, P) indicates that k and

i refer to the fragment density matrix P k( } (K
k
)).

Using these index assignments, the density matrix P (K ) of the target macro-

molecule M is assembled by an iterative procedure :

P
x(k, i,P ), y(k, j,P )

(K ) ¯ P
x(k, i,P ), y(k, j,P )

(K ) ­ Pk
ij
(K

k
), (21)

where only the non-zero elements of each fragment density matrix P k( } (K
k
)) are used.

Since the fragment density matrices P k( } (K
k
)) are typically sparse, this approach oŒers

some computational savings.

The size of parent molecules M
k

is bounded ; hence there is a bound on the

computer time needed for their ab initio calculation as well as for the index

reassignment for elements of each fragment density matrix. This bound is independent

of the number of density fragments within the target macromolecule, consequently,

the M C-AFDF ADM A method requires computer time that depends linearly on the

number of fragments and on the size of the target macromolecule M .

The accuracy of the method, compared with a conventional ab initio calculation,

depends on the size of the coordination shell in each parent molecule. By taking large

enough parent molecules M
k
, the diŒerence between the M C-ADMA density matrix

P (K ) and the ideal conventional ab initio density matrix of the given basis set can be

reduced below any positive threshold. Satisfactory accuracy can be obtained if a

formal `coordination shell ’ of approximately 4± 5 A/ thickness is used in each parent

molecule M
k
.

If the size of the coordination shell is insu� cient, then the ADMA density matrix

P (K ) may deviate from idempotency and produce electron densities which do not

exactly correspond to the right integral number of electrons. As the direct tests [53, 54,

57] on electron densities indicate, these errors may be negligible locally, but for

macromolecules they may accumulate and for a protein of well over a thousand atoms
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Quantum chemistry of macromolecular shape 371

the error of the overall integrated electronic charge may be as much as half an electron.

However, both idempotency and charge conservation can be restored using standard

density matrix methods [74, 75] followed by a simple scaling [56]. Similar deviations

from idempotency may occur if one attempts to compare and approximate electron

densities at slightly displaced nuclear con® gurations. Some aspects of these two

problems can be studied from a common perspective using methods [61, 62] based on

the Lo$ wdin [76 ± 78] transforms. These methods are analogous to a technique employed

in quantum crystallography for generating density matrices from experimental

electron densities [79].

The idempotency condition for a density matrix P (K ) expressed in terms of a non-

orthonormal AO basis } (K ) is given by the matrix product P (K )S(K )P (K ) where

S(K ) is the overlap matrix for the AO basis. In this way, a formal product operation

n between density matrices can be de® ned using the overlap matrix, and the

idempotency condition can be written as

P (K ) n P (K ) ¯ P (K ). (22)

If the AOs of a basis set } (K ) are centred on the nuclei, then the main eŒect of a

small conformation change K ! K « of the nuclei is the displacement of the AO basis

functions. If the D K displacement is small, then a simple approximation of the

electronic density q (r, K « ) at the displaced nuclear arrangement K « can be obtained [52,

60 ± 63] by taking the same density matrix P (K ) and using it with the set of displaced

AOs }
i
(r, K « ) at the new nuclear locations:

q
appr

(r, K « ) ¯ 3
n

i= "

3
n

j= "

P
ij
( } (K )) }

i
(r, K « ) }

j
(r, K « ). (23)

The error of this rather simplistic approach is surprisingly small.

If higher accuracy is needed, then an alternative method [52, 60 ± 63] can be used,

based on the Lo$ wdin [76 ± 78] transform and analogous to a method used in quantam

crystallography for the construction of approximate `experimental ’ density matrices

from X-ray diŒraction results [79]. The Lo$ wdin transform of a density matrix P (K )

involves pre- and post-multiplication by the matrix S(K ) " / # :

S(K ) " / # P (K )S(K ) " / # . (24)

The resulting matrix is idempotent with respect to ordinary matrix multiplication.

If an overlap matrix S(K « ) expressed in terms of the basis functions }
i
(r, K « ) moved

to the new nuclear con® guration K « , then the inverse Lo$ wdin transform, when applied

to S(K ) " / # P (K )S(K ) " / # gives a new approximation to the density matrix at the

displaced nuclear geometry :

P (K « , [K ]) ¯ S(K « ) Õ " / # S(K) " / # P (K )S(K ) " / # S(K « ) Õ " / # . (25)

This matrix P (K « , [K ]) is an idempotent improved approximation of the density matrix

P (K « ). Simple substitution shows that the matrix P (K « , [K ]) is idempotent with respect

to n multiplication:

P (K « , [K ])S(K « )P (K « , [K ]) ¯ P (K « , [K ]). (26)

One may regard the transformation of P (K ) into the new density matrix P (K « , [K ])

as a formal `orthonormalization ± deorthonormalization ’ carried out with respect to

the original and displaced basis sets at the two nuclear geometries K and K «
respectively.
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372 P. G . M ezey

The most time-consuming step in the forward-inverse Lo$ wdin transforms of the

technique is the calculation of the macromolecular overlap matrices S(K ) and S(K « ).
However, this is only a minor problem, since these overlap matrices are rather sparse

for large molecules, and simple internuclear distance conditions can be used to identify

most near-zero elements.

In some instances it is su� cient to estimate a macromolecular density matrix from

a matrix already determined for a nuclear geometry that diŒers only slightly from the

conformation of interest. In these cases, the ADMA density matrix P (K ) can be

readjusted for small nuclear geometry variations using the method described above.

It is worth emphasizing that the ADMA density matrix P (K ) represents the same

accuracy as an in® nite-grid-resolution numerical M EDLA electron density ; however,

the ADMA method is more versatile. The ADM A macromolecular density matrix,

with idempotency correction if needed, can also be used for the computation of a

variety of molecular properties, including approximate macromolecular forces [61,

62].

For large molecules the quantum-chemical computation of forces acting on

individual nuclei is a di� cult problem. The ADM A method provides an approxi-

mation (ADM A± FORCE) for macromolecular force computation [61, 62]. If

macromolecular electron densities are available, it is natural to consider the

electrostatic Hellmann± Feynman [80, 81] theorem for force calculations [82]. The

sensitivity of calculated Hellmann ± Feynman forces to the quality of molecular

wavefunction or to the quality of electron density is a limitation that reduces its

applicability. However, the natural fragment size limitation of the AFDF approach

reduces the eŒect of locally `overcomplete ’ basis sets in ordinary Hartree ±

Fock ± Roothaan ± Hall techniques, which appears as one of the sources of errors in the

application of the Hellmann ± Feynman theorem. W ork is in progress for establishing

error estimates of the ADMA-FORCE method. Note that, for macromolecules, even

a rough estimate of the forces, as provided by the ADM A± FORCE application of the

electrostatic Hellmann± Feynman theorem, appears valuable.

Approximate ADM A electron densities of macromolecules can be computed

relatively easily from assembled density matrices and basis set information } (K ). If an

approximate ADM A electron density q (r, K ) of a macromolecule M of nuclear

con® guration K has been determined from the assembled density matrix P (K ), then

approximate forces can be computed using the electrostatic Hellmann± Feynman

theorem [61, 62]. If in this con ® guration K the three-dimensional position vector of

nucleus a of nuclear charge z
a

is denoted by R
a

¯ R
a
(K ), and if F

a
denotes the force

operator representing the force acting on nucleus a, then, according to the electrostatic

Hellmann± Feynman theorem [80 ± 82], the expectation value of this force operator can

be written as

© F
a
(K ) ª ¯ ® z

a
! q (r, K ) (R

a
® r) r R

a
® r r Õ $ dr ­ z

a
3
N

a 1 b

z
b
(R

a
® R

b
) r R

a
® R

b
r Õ $ . (27)

This force can be interpreted as a sum of nuclear repulsion and a classical

contribution from the electronic charge density q (r, K ). The integral in the ® rst term of

the expectation value can be computed e� ciently if an ADM A density matrix P (K )

and the associated basis set information } (K ) are available [61, 62].

The fuzzy `shares ’ of electron densities of local moieties and functional groups

within macromolecules can be interpreted using the AFDF approach. Consider a

nuclear family f
k

that contains all the nuclei of the moiety or functional group of

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Quantum chemistry of macromolecular shape 373

interest and, by applying the AFDF method, a fuzzy electron density fragment of the

moiety or functional group is obtained. Note that in this approach there are no sharp

boundaries separating local electron density contributions, and the fuzzy electron

density fragments have properties analogous to those of complete molecules.

2.4. Density domains, functional groups and their representation using the additive

fuzzy density fragmentation principle

Following the terminology used in electron density shape analysis [65], a molecular

isodensity contour (MIDCO) G(K , a) is a collection of all points r of the three-

dimensional space where the electronic density q (K , r) is equal to a given threshold

value a :

G(K , a) ¯ ² r : q (K, r) ¯ a ´ . (28)

The point set that includes all points of the MIDCO G(K , a) and all the points

within its interior is called a density domain and is denoted by DD(K , a) :

DD(K , a) ¯ ² r : q (K , r) & a ´ . (29)

Whereas the density threshold a is a continuous parameter and each molecule has

an in® nite number of DD(K , a), nevertheless, for each nuclear con® guration K there

are only a ® nite number of topologically diŒerent bodies of DDs.

DDs form the basis for a quantum-chemical de ® nition of chemical functional

groups [64 ± 66], and they also provide a natural representation of molecular bodies and

chemical bonding in molecules [48, 51].

The motivation and justi® cation of the approach followed here for the quantum-

chemical representation of functional groups can be illustrated by the following

example. Take two molecules, for example two methane molecules in an arrangement

where the two carbon atoms are separated by a distance of 20 au. Even at this distance,

the electron densities of these two molecules overlap slightly, that is at some low-

density threshold a there exists an isodensity contour G(K , a) that encloses the nuclei

of both molecules. Nevertheless, the two molecules maintain their separate identities

and, at some higher density threshold a « , one ® nds two separate MIDCOs G
"
(K

"
, a « )

and G
#
(K

#
, a « ), each enclosing the nuclei of only one of these two molecules. Clearly,

the separate identities of these two molecules are manifested by the existence of two

separate M IDCOs G
"
(K

"
, a « ) and G

#
(K

#
, a « ).

How does this example relate to functional groups ? In many instances, a given

chemical functional group can be found in many diŒerent molecules ; yet the functional

group shows only limited variations. Functional groups appear to have some limited

identity within molecules. This aspect can be captured by the same tool that indicated

the separate identity of two molecules in the example of a pair of methane molecules :

the existence of a M IDCO that separates the nuclei of the functional group from the

rest of the nuclei of the molecule.

Be de ® nition, a quantum-chemical functional group is a fuzzy electron density

fragment (AFDF fragment) associated with a family of nuclei f
k
, where for this set of

nuclei exists some density threshold a such that the corresponding M IDCO G(K , a)

separates this family f
k

from the rest of the nuclei of the molecule. Of course, the

separating M IDCOs of functional groups correspond to somewhat higher-density

thresholds a than those of the M IDCOs separating individual molecules ; nevertheless,

the limited autonomy of functional groups is a valid aspect that is re¯ ected in the

de® nition.
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374 P. G . M ezey

Consider an electron density threshold a. Take the family of functional groups

F
"
, F

#
, ¼ , F

m
(30)

of a macromolecule M of some nuclear con ® guration K, where the corresponding

density domains
DD

"
(a, K ), DD

#
(a, K ), ¼ , DD

m
(a, K ) (31)

appear as separate entities at this threshold a.

The electron density contribution q i(r) of each functional group F
i
can be calculated

using the AFDF approach, based on the AFDF of the macromolecular density q
M

(r).

The nuclear set chosen for each fuzzy fragment density is the nuclear set embedded in

the corresponding density domain DD
i
(a, K ) representing functional group F

i
.

The corresponding fuzzy fragment electron density contributions

q
F"

(r), q
F#

(r), ¼ , q
Fi

(r), ¼ , q
Fm

(r), (32)

represent the `share ’ of each functional group F
i
within the total electron density q

M
(r)

of the macromolecule M .

One may reconstruct the electron density q
M

(r) of macromolecule M by a simple

superimposition of the fuzzy fragment densities of the family of F
"
, F

#
, ¼ , F

m
functional

groups.

One should note that the selected density threshold value a identi® es only some of

the possible functional groups F
"
, F

#
, ¼ , F

m
of molecule M . If a diŒerent threshold

value a « is chosen, then a diŒerent assignment of nuclei to individual density domains

may result, providing a manifestation of the `limited autonomy ’ of a diŒerent set of

functional groups within the same macromolecule M . Note that the separate density

domains for each functional group exists only within a limited range of density

thresholds, nevertheless, the functional groups F
"
, F

#
, ¼ , F

m
and the corresponding

fragment electron densities q
F"

(r), q
F#

(r), ¼ , q
Fm

(r) are not restricted to any speci® c

threshold value a of the macromolecular electron density.

3. The spherically weighted a� ne transformation method for deformations of

electron densities

Consider a macromolecular electron density corresponding to a nuclear con® gur-

ation K , and a small distortion D K resulting in a nearly identical nuclear con® guration

K « . The n nuclei of the macromolecule are denoted by A
"
, A

#
, ¼ , A

i
, ¼ , A

n
, and the

three-dimensional position vectors of nucleus A
i

are denoted by v(i) and by t(i) in

con® gurations K and K « respectively.

Any four non-coplanar nuclei of some indices p, q, r, s in conformation K de ® ne a

tetrahedron ( p, q, r, s, V ), with vertices denoted by

v (p ), v(q), v(r) and v(s). (33)

The vertices of the corresponding tetrahedron (p, q, r, s, T ) of the same four nuclei in

the distorted `target ’ conformation K « are denoted by

t(p ), t(q), t(r) and t(s). (34)

W ith reference to tetrahedron ( p, q, r, s, V ), any vector v of the three-dimensional

space can be written as an a� ne combination

v ¯ c(p )v (p ) ­ c(q)v (q) ­ c (r)v(r) ­ c(s)v(s). (35)

For the a� ne coordinates
c( p ), c(q), c(r) and c(s) (36)
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Quantum chemistry of macromolecular shape 375

of vector v with respect to tetrahedron ( p, q, r, s, V ), the condition

c( p ) ­ c(q) ­ c (r) ­ c(s) ¯ 1 (37)
holds.

A linear transformation that distorts the entire space so that the tetrahedron ( p, q,

r, s, V ) becomes the tetrahedron ( p, q, r, s, T ) is de ® ned by replacing each vector v with

a vector t where the a� ne coordinates of t with respect to tetrahedron ( p, q, r, s, T ) are

the same as the a� ne coordinates of vector v with respect to tetrahedron ( p, q, r, s, V ) ;

that is, vector v of equation (35) is replaced by

t ¯ c( p )t(p ) ­ c(q)t(q) ­ c(r)t(r) ­ c(s)t(s). (38)

For each pair ( p, q, r, s, V ) and ( p, q, r, s, T ) of (non-degenerate) tetrahedra, this

transformation is a linear homotopy.

In [51] a simple extension of this transformation, the weighted a� ne trans-

formation (WAT) method, was suggested where for a molecule of more than four

nuclei all possible tetrahedra were considered. By combining all the corresponding

linear transformations using nonlinear weight functions, a global transformation was

proposed. This WAT method distorts the entire three-dimensional space so that each

nucleus is moved precisely to its assigned new location and the surrounding electron

density is distorted accordingly. Whereas for large deformations the transformed

electron density may show excessive deviations from the actual deformation that

occurs in an actual conformational change, if the nuclear displacements are small, then

the W AT technique provides a useful approximation to the actual electron density

change.

The number of individual transformations combined within the W AT method is

n
s
¯ n(n ® 1) (n ® 2) (n ® 3) } 4 !, where n is the number of nuclei in the molecule. The

value of n
s

grows with the fourth power of n, which renders the method practical only

for small molecules or small molecular fragments. Clearly, for a macromolecule the

number n
s

becomes much too large and the W AT technique impractical. However, in

local ranges of large molecules the eŒects of a displacement of some nuclei far away

from the local range and the electron density surrounding such distant nuclei are of

minor importance. This suggests a modi® cation of the W AT method to involve only

those local tetrahedral transformations which are relevant to each local range of the

macromolecule. This reduces the number of tetrahedra involved in the overall

transformation. By an additional nonlinear spherical weighting, which preserves the

exact transformation for the nuclear locations, the modi® ed technique, referred to as

the spherically weighted a� ne transformation (SW AT) technique, becomes applicable

for the generation of approximate electron density deformations associated with small

conformational changes of macromolecules [68].

Equation (35) describing the a� ne representation of point v can be rearranged :

v ® v(s) ¯ c( p )(v( p ) ® v(s)) ­ c(q)(v(q) ® v (s)) ­ c (r)(v(r) ® v(s)). (39)

The column vectors v(p ) ® v(s), v(q) ® v(s) and v(r) ® v (s) de® ne a matrix S (p ,q, r, s,V ),

S( p , q, r, s,V ) ¯ mat r (v( p ) ® v (s)) (v(q) ® v(s)) (v(r) ® v(s)) r , (40)

and the ® rst three a� ne coordinates c (p ), c(q), c(r) de® ne a column vector c(p ,q, r, s),

c(p ,q, r, s) ¯ (c( p ), c(q), c(r)) « . (41)

Equation (39) can be rearranged to give

c( p , q, r, s) ¯ (S (p ,q, r, s,V )) Õ " (v ® v(s)). (42)
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376 P. G . M ezey

For every non-degenerate tetrahedron ( p, q, r, s, V ), the inverse matrix (S (p ,q, r, s,V )) Õ "

of S (p ,q, r, s,V ) exists.

By analogous treatment of the vectors describing the displaced nuclear ar-

rangement, one obtains

S(p ,q, r, s,T ) ¯ mat r (t(p ) ® t(s)) (t(q) ® t(s)) (t(r) ® t(s)) r (43)
and

t ® t(s) ¯ S( p , q, r, s,T ) c( p , q, r, s). (44)

Equations (42) and (44) give

t ® t(s) ¯ S( p , q, r, s,T ) (S (p ,q, r, s,V )) Õ " (v ® v(s)). (45)

Using the notation

D (p ,q, r, s) ¯ S(p ,q, r, s,T ) (S (p ,q, r, s,V )) Õ " (46)
and

u( p, q, r, s) ¯ t(s) ® D (p ,q, r, s) v(s), (47)

the vector t can be written as

t ¯ D ( p , q, r, s) v ­ u(p ,q, r, s). (48)

Within the SW AT technique, if one considers the overall transformation of a point

v, only those tetrahedra ( p, q, r, s, V ) and the associated linear transformations will be

used from the complete family of n
s

tetrahedra ( p, q, r, s, V ) and the corresponding n
s

transformations for which all four vertices p, q, r and s of the tetrahedron fall within a

suitably chosen radius R of point v. This reduces the number of n
s

of tetrahedra to be

considered to a number n
s
(v, R) where n

s
(v, R) ! n

s
. A suitable nonlinear weighting is

determined only for the transformations associated with these tetrahedra.

For each point v, one non-zero weight function is associated with each of the

tetrahedra ful® lling the distance criterion. These v-dependent and R-dependent weight

functions w( p , q, r, s) (v, R) are required to ful® l several conditions.

(i) If v ¯ v(i), then the weighted average of the n
s
(v, R) transformations assigns the

point v(i) of the ith nuclear position exactly to the point t(i) of the new ith

nuclear position.

(ii) As a function of v, the weighted average of the n
s
(v, R) selected transformations

deforms the electronic density continuously.

(iii) The summation of the weight functions for all tetrahedra ( p, q, r, s), which is

equivalent to a summation of the weight functions for the selected n
s
(v, R)

tetrahedra ful® lling the distance criterion, must result in unity :

3
(p ,q, r, s)

w (p ,q, r, s) (v, R) ¯ 1. (49)

In order to construct a suitable weight function w( p , q, r, s) (v, R) for each tetrahedron,

® rst the distance condition is tested, and one sets

h(p ,q, r, s) (v, R) ¯ 0 (50)

if any of the vertices of a tetrahedron ( p, q, r, s, V ) falls on or outside the sphere of

radius R and centre v, that is if any of the following conditions holds :

r v (p ) ® v r & R , (51)

r v(q) ® v r & R , (52)

r v (r) ® v r & R , (53)

r v (s) ® v r & R . (54)
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Quantum chemistry of macromolecular shape 377

For the actual point v, only those v( j) vertices are used which ful® l the distance

condition

r v ( j) ® v r ! R . (55)

For each vertex v(i) in the family of vertices falling within the sphere, a v-dependent

function f (i) (v, R) is de® ned as

f (i) (v, R) ¯ 0
j(j 1 i)

d(v, v( j)), (56)

where d(v, v(j)) is the distance between points v and v( j), and where index j runs over all

v( j) vertices falling within the sphere. If point v coincides with any of these nuclear

positions v( j), then f (i)(v) becomes zero, except if j ¯ i, that is if v coincides with the

nuclear position v(i).

In order to introduce an additional smooth, in ® nitely diŒerentiable spherical

weighting that is equal to unity at point v and is identically zero outside the sphere of

radius R and centre v, the following functions are used :

f(y) ¯

1

2
3

4

exp 0 ® 1

y # 1 , if y " 0,

0 if y % 0,

(57)

and

F(r, R) ¯
f(R ­ r) f(R ® r)

f # (R)
. (58)

The combined weighting function g(i)(v, R) for each vertex v(i) in the family of

vertices falling within the sphere is de® ned as

g(i)(v, R) ¯ F(d(v, v (i)), R) f (i)(v, R), (59)

that is as

g(i)(v, R) ¯ F(d(v, v(i)), R) 0
j(j 1 i)

d(v, v( j)). (60)

As a function of point v, the sphere de® ning the local surroundings of point v

changes continuously, and the weights assigned to various vertices v (i) as they are

reached by the surface of the sphere also change continuously and smoothly from zero

to a maximum of unity at the centre v of the sphere.

For each tetrahedron ( p, q, r, s) that falls within the sphere about the given point v,

a continuous function h(p ,q, r, s)(v, R) is de® ned as

h(p ,q, r, s)(v, R) ¯ g(p )(v, R) ­ g(q)(v, R) ­ g(r)(v, R) ­ g(s)(v, R). (61)

If the point v coincides with any of the nuclear positions v ( j), then g( p , q, r, s)(v, R)

becomes zero, except if j is one of the indices p, q, r or s, that is if point v coincides with

one of the nuclear positions v( p ), v (q), v(r) or v(s).

The function h
sum

(v, R) is the sum of all these h( p , q, r, s)(v, R) functions:

h
sum

(v, R) ¯ 3
(p ,q, r, s)

h(p ,q, r, s)(v, R). (62)

The v-dependent and R-dependent weight functions w (p ,q, r, s)(v, R) are de® ned as

w (p ,q, r, s)(v, R) ¯
h(p ,q, r, s)(v, R)

h
sum

(v, R)
. (63)
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378 P. G . M ezey

The overall transformation is de® ned as

t ¯ 3
(p ,q, r, s)

w (p ,q, r, s)(v, R) (D (p ,q, r, s)v ­ u(p ,q, r, s)), (64)

where for each point v the summation can be restricted to those tetrahedra which fall

within the sphere about v.

This weighting scheme ensures that each nuclear position v ( j) is transformed

exactly to its counterpart nuclear position t( j), while the entire electron density is

deformed continuously. The SW AT method uses only those reference positions

(nuclear positions) as vertices for a� ne transformations which are within the vicinity

of each point v being transformed. This latter feature is advantageous for macro-

molecular electron densities, since only a subset of nuclear locations is involved in the

transformation of any given point. The method has no origin or coordinate

dependence. This SWAT algorithm has been implemented as a computer program

[68].

If the SW AT-generated approximate macromolecular electron density at the new

nuclear geometry K « is compared with the electron density calculated directly by the

ADMA method for the same nuclear con® guration K « , then an interesting analogy

with the le Chatelier principle applies. The change in nuclear geometry from K to K « ,
and the associated change in the electron density generated by the SW AT method,

relying on the density at the original con ® guration K , may be regarded analogous to

a formal `stress ’ applied to a thermodynamic system in equilibrium. The replacement

of the SWAT electron density with an actual ADM A electron density at the new

con® guration K « may be regarded as a formal `relaxation ’ of this `stress ’ . This

situation is analogous to the electron density shape changes due to electronic

excitations where an apparent trend, called the quantum-chemical le Chatelier

principle for molecular shapes (QCLCP-MS) seems to apply [65] ; the shape change

due to relaxation from the shape of the electronic density obtained in a vertical

electronic excitation (before nuclear rearrangement) tends to reduce the initial shape

change of the vertical excitation. The analogy takes a diŒerent form in the case of the

SWAT transformation followed by a replacement of the density with a direct ADMA

density at the new nuclear con® guration. According to the QCLCP-M S, the

replacement of the SW AT density with the ADM A density is expected to reduce the

initial shape change generated by the SW AT transformation.

4. The extension of the shape group methods to the global and local analysis of

macromolecular electron densities

The topological shape analysis techniques provide a numerical representation of

shape information, and the numbers so determined form a shape code. Numerical

shape codes can be compared with a computer, and numerical measures of molecular

shape similarity can be computed. One apparent advantage is the elimination of the

subjective element of visual shape comparisons, a potentially important aspect if large

sequences of molecules are compared. Local and global similarity analyses based on

molecular shape codes are of some theoretical interest in the study of the role of

electron density in static molecular properties and in reactivity and may also have

some practical interest in drug design [83 ± 90] and toxicological risk assessment [58].

4.1. The elements of the shape group methods

The entire electron density of a molecule M can be described by an in® nite family

of MIDCOs G(K , a) nested within one another. As follows directly from their
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Quantum chemistry of macromolecular shape 379

de® nition, equation (28), for two M IDCOs G(K , a) and G(K , a « ) of the same nuclear

con® guration K , the relation

G(K , a) encloses G(K , a « ) (65)
holds if a % a « .

The three-dimensional shape groups, describing directly the pattern of inter-

relations between the various three-dimensional curvature domains of the electronic

density function, where the density value is regarded as the coordinate along the fourth

dimension, have been discussed earlier [83, 84] and have been found to possess some

advantages [65, 73]. Nevertheless, the interpretation of results and practical appli-

cations of shape analysis are somewhat simpler if the shape group methodology is

applied in its two-dimensional realization of the family of M IDCOs. Note that the

M IDCOs are regarded as two-dimensional surfaces embedded in the ordinary three-

dimensional space.

The shape groups are algebraic-topological structures, de® ned as the homology

groups of truncated objects, where the truncation is determined by local shape

properties, for example by local curvature properties [69 ± 72]. Although the shape

groups are algebraic groups describing shape properties, they are not related to point

symmetry groups. The presence of symmetry, however, may in¯ uence the shape

groups. In the usual applications of shape groups, the local shape properties are

speci® ed in terms of shape domains, for example in terms of the local convex, concave

or saddle-type regions of M IDCOs [65], where the local curvatures of individual

M IDCOs are compared with tangent planes.

A more detailed shape description of M IDCOs is obtained if the tangent plane is

replaced by some other, possibly curved objects, for example, if the M IDCO is

compared with a series of tangent spheres of various radii r or with a series of oriented

tangent ellipsoids T. The latter choice is advantageous if a shape characterization

involving some reference directions is needed ; these ellipsoids can be translated but

not rotated as they are brought into tangential contact with various points of the

M IDCO surface G(K , a).

A general tangent object T may fall locally on the outside or on the inside, or it may

cut into the given M IDCO surface G(K , a) within any small neighbourhood of the

surface point r of the tangential contact. Accordingly, with reference to T, all points

of the M IDCO are classi® ed into one of three classes. By carrying out this

characterization for all points r, the M IDCO G(K , a) is formally decomposed into

several local shape domains of types D
#
, D

!
and D

"
, that is into locally convex, locally

concave and locally saddle-type shape domains respectively, where the terms concave,

saddle type and convex are interpreted relative to the tangent object T. For example,

if a tangent sphere of some curvature b is used for reference object T, then a `locally

convex D
#

domain of G(K , a) relative to T ’ corresponds to a surface domain of

G(K , a) where at each point within the domain both the minimum local curvature and

the maximum local curvature of the surface are less than the value b. Note that a

typical M IDCO is an orientable surface, and a tangent sphere T may osculate to

G(K , a) either from the inside or from the outside of G(K , a). These two cases

correspond to a negative or a positive reference curvature value b respectively. More

details of the actual determination of these D
#
, D

!
and D

"
curvature domains of

M IDCOs can be found in [65].

If T is chosen as a sphere, then orientation cannot play any role, and for a sphere

of radius r the curvature is b ¯ 1 } r. Note that b ¯ 0 corresponds to the case of the

in ® nitely large sphere, the tangent plane.
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380 P. G . M ezey

The characterization depends on the curvature parameter b, and in a detailed

shape analysis a continuum of b values is considered. For each speci® c reference

curvature b, the local shape domains D
#
, D

!
and D

"
generate a complete partitioning

of the MIDCO surface G(K , a). Select all D l domains of a speci® ed type l ; for example

take all the locally convex domains D
#

relative to reference curvature b. If these

domains are excised from the M IDCO surface G(K , a), then a truncated contour

surface G(K , a, l ) is obtained that inherits some essential shape information from the

original M IDCO surface G(K , a). This shape information can now be detected and

identi® ed by simple topological means. This procedure is repeated for a whole range

of reference curvature values b, that is for a whole series of truncated surfaces, which

gives a detailed shape analysis of the original non-truncated M IDCO surface G(K , a).

Important simpli ® cation is possible as a consequence of the simple fact that within the

entire range of possible reference curvature values b there are only a ® nite number of

topologically diŒerent truncated M IDCOs G(K , a, l ).

The truncated surfaces are characterized by their topological invariants, and these

invariants provide a numerical shape characterization.

The homology groups of the truncated surfaces are groups of algebraic topology

which are themselves topological invariants. The ranks of the homology groups are

the Betti numbers, which are perhaps the most important topological invariants.

The notations for the shape groups of the original M IDCO surface G(K , a) follow

from their de ® nition as the homology groups H p
l (a, b) of the truncated surfaces G(K ,

a, l ), where the formal dimensions p of these three shape groups are zero, one and two.

Numerical shape codes of the molecular electron density distributions are generated

by the lists of the bp
l (a, b) Betti numbers of their H p

l (a, b) shape groups. For each shape

domain and truncation pattern l and for each reference curvature b of a given

M IDCO G(K , a) of density threshold a, three shape groups H !l (a, b), H "l (a, b), and

H #l (a, b) are determined, collectively expressing the essential shape information of the

M IDCO G(K , a). For each (a, b) pair of density threshold a and curvature parameter

b, and for each shape domain truncation type l , there are three Betti numbers, denoted

b !l (a, b), b "l (a, b), and b #l (a, b).

The essential steps in the application of the SGM can be summarized as follows.

Step 1. Choose a range of electron density thresholds a and a range of reference

curvatures b. For each pair of values a and b within these ranges, each

MIDCOs G(K , a) is partitioned into local curvature domains relative to

each value b. Note that in practice only a ® nite number of (a, b) pairs need

to be considered in order to identify all the topologically diŒerent patterns

of curvature domains. The local curvature of a M IDCO surface (G(K , a) at

some point r is characterized by a local curvature matrix called the local

Hessian matrix. The points of G(K , a) are classi® ed into curvature domains

of types D
!
(b), D

"
(b) or D

#
(b), by comparing the local canonical curvatures

(the eigenvalues of the local Hessian matrices) at each surface point to the

reference curvature b. A point r of G(K , a) is assigned to a D
!
(b), D

"
(b) or

D
#
(b) curvature domain, if none, one or two (respectively) of the

eigenvalues of the local Hessian matrix of the surface at point r are smaller

than b.

Step 2. For each (a, b) pair of values, all curvature domains D l (b) of a speci® ed

type l are formally removed from the corresponding M IDCO G(K , a),

resulting in a truncated surface G(K , a, l ). For each molecule and for the
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Quantum chemistry of macromolecular shape 381

whole range of parameter values a and b, there are only a ® nite number of

classes of topologically diŒerent truncated surfaces.

Step 3. The shape groups of the entire molecular electron density distribution are

determined by calculating the algebraic homology groups for each

topological equivalence class of the truncated surfaces. The Betti numbers

are the ranks of these homology groups. The Betti numbers serve as

numerical shape descriptors, describing the mutual relations of the various

local shape domains for the entire range of M IDCOs G(K , a).

4.2. Numerical shape codes using (a, b) parameter maps

For any ® xed nuclear con® guration K , the shape groups of a molecule depend on

two parameters : the electronic density threshold a and the reference curvature b. By

de® nition, a positive b value indicates a tangent sphere placed on the exterior side of

the M IDCO surface, and a negative b value indicates a sphere placed on the interior

side of the MIDCO. The ranges of a and b de® ne an (a, b) map, a formal two-

dimensional map, where the distribution of the Betti numbers of various shape groups

along this map gives a detailed numerical shape characterization of the electronic

density of the molecule M .

In practical computations, separate (a, b) maps are generated for each of the three

types of Betti numbers b !l (a, b), b "l (a, b), and b #l (a, b). The Betti numbers obtained for a

given pair of values of parameters a and b are assigned to the given location of the (a,

b) parameter map. The chemically most relevant shape information is described by the

Betti numbers of type b "l (a, b), that is by the ranks of the shape groups of dimension 1.

Usually, a grid of a and b values is considered within some interval [a
min

, a
max

] of

density thresholds a and some interval [b
min

, b
max

] of reference curvature values b. The

range of these parameters often covers several orders of magnitude, and it is

advantageous to use logarithmic scales. The log r b r values are taken for negative values

of the curvature parameter b.

In some applications, the range [0 ± 001, 0 ± 1 au.] is taken for the density threshold

values a, the range of [ ® 1 ± 0, 1 ± 0] is taken for the curvature b of the test spheres, and a

41 ¬ 21 grid is used on a logarithmic scale. The values of the Betti numbers at the grid

points (a, b) form a numerical shape code matrix - (a,b) representing the shape of the

fuzzy electron density of the molecule.

4.3. Numerical shape similarity measures from shape codes

The numerical shape codes, in the form of matrices - (a ,b) of the (a, b) maps of Betti

numbers bp
l (a, b) are suitable for the evaluation of numerical shape similarity measures

between molecules. If n
a

and n
b

are the number of grid divisions for parameters a and

b respectively, then the total number of elements in the shape code matrix is

t ¯ n
a
n

b
. (66)

The shape codes - (a, b), A and - (a ,b), B of two molecules A and B respectively can be

compared and a numerical shape similarity measure can be de® ned as

s(A, B) ¯
m [ - a,b), A, - (a,b), B]

t
, (67)

where m [ - (a ,b), A, - (a, b), B] is the number of matches between corresponding elements

in the two matrices.

If the 41 ¬ 21 grid is used, then the elements of matrix - (a ,b) can be stored in an
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382 P. G . M ezey

Figure 3. Three MIDCOs G(0 ± 1), G(0 ± 01) and G(0 ± 001) of the calculated ab initio quality AFDF
electron density of a protein, the proto-oncogene tyrosine kinese protein 1ABL containing

873 atoms. Electron density thresholds are given in atomic units. Macromolecular

electron density images computed by the MEDLA or ADMA methods may provide
interesting insight. For a reproducible local or global shape analysis, avoiding the

subjective elements of visual inspection, non-visual algorithmic methods, such as the

SGMs are suggested.

integer vector C of 861 components, and the shape similarity measure s(A, B) can be

written as

s(A, B) ¯ 3
) ’ "

i= "

d
j(i), k(i)

861
, (68)

where d
j,k

is the Kroenecker delta, and the integers j(i) and k(i) are de® ned as

j(i) ¯ C
i
(A) (69)

and

k(i) ¯ C
i
(B) (70)

respectively.

Numerical evaluation and comparison of molecular shape features have been

applied to several molecular families and useful shape± property correlations have

been established using this methodology [85 ± 89].
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Quantum chemistry of macromolecular shape 383

4.4. Application of the shape group methods to global and local shape problems of

macromolecules

Visual inspection of computed electron density contours of macromolecules is a

rather subjective tool for the evaluation of local and global shape features. In ® gure 3,

the calculated ab initio quality AFDF electron density of a protein, the proto-

oncogene tyrosine kinese protein 1ABL containing 873 atoms [90] is displayed at three

density thresholds as the MIDCOs G(0 ± 1), G(0 ± 01) and G(0 ± 001). The threshold values

are expressed in atomic units. W hereas such images of reasonably accurate electron

densities may provide interesting insight, nevertheless, for detailed and reproducible

shape evaluations, non-visual algorithmic methods are preferred.

One pragmatic feature of the SGM of topological shape description is the

combination of the advantages of geometry and topology. This approach follows the

spirit of the principle of geometrical similarity as topological equivalence (GSTE) [65].

On the one hand, the local geometrical curvature properties and the associated

geometrical classi ® cation of points of the M IDCO surfaces lead to the local shape

domains and to the truncated M IDCOs G(K , a, l ) are de® ned in terms of geometry. On

the other hand, the truncated surfaces G(K , a, l ) are characterized topologically using

the shape groups and their Betti numbers, which are topological invariants within

ranges of electron density threshold a and reference curvature parameter b.

One may focus on the global shape features of macromolecular electron densities

obtained using the M EDLA or ADM A methods by restricting the range of electron

density thresholds a to low densities. This also allows one to reduce the range of

curvature parameter b to the intermediate values, since extreme negative or positive

local curvatures are not likely to occur at all for MIDCOs of low-density thresholds.

Such limited shape analysis ignores many of the ® ne details of macromolecular shapes

evident only at high densities and focuses on the most prominent global features. This

approach does not require any speci® c modi® cation of the shape group methodology

beyond the special choice of the range within the (a, b) parameter maps.

A more challenging task is the local shape analysis of molecular moieties within

macromolecules [48 ± 52, 65].

The SGMs, implemented as fuzzy electron density shape analysis methods are

applicable to molecular fragments, as has been ® rst pointed out in [71]. The fuzzy

aspect of this methodology implies that the molecular fragments so analysed are

chosen as fuzzy entities, where the electron density of the fragment has no de® nite

boundary, a fuzzy property analogous to that of complete molecules.

This fuzzy aspect of molecular fragments is well re¯ ected in the de® nition of DDs

[64 ± 66], which were the ® rst practical implementation of the fuzzy molecular fragment

concept within this framework. Note, however, that two DDs of separate identities at

some high-density range may merge into a single DD within a lower-density range,

and the individual identities of the fuzzy objects of high density are no longer

preserved at a low density. Nevertheless, the overall density can be partitioned into

fuzzy fragments even within the density range where merger occurs. This partitioning

can be obtained in an additive manner. One such AFDF can be obtained as a

generalization of the density domains using the M ulliken± M ezey AFDF method

[48± 52].

An early adaptation of the SGM for the local shape analysis of fuzzy molecular

fragments, such as the local cavity region of an enzyme or the reactive region of

another large molecule, has been suggested in [72], using a series of nested contour

surfaces representing the local shape of fuzzy electron density fragments. W hereas for
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384 P. G . M ezey

an important range of density thresholds the relevant pieces of the actual contour

surfaces of the complete macromolecule do not form closed surfaces, nevertheless

these local contours can be completed by suitably extending them to form closed

surfaces [72]. These closed surfaces become the actual representations of local fuzzy

molecular fragments [72].

The AFDF approach provides a natural and practical tool for the construction of

such local fuzzy fragments of the macromolecular electron density. Useful practical

implementations of the AFDF technique are the M EDLA method of Walker and

M ezey [53 ± 57] and the more recent ADM A macromolecular density matrix technique

[50, 52, 60 ± 63].

For a given electron density threshold a, the set of functional groups F
"
, F

#
, ¼ , F

m
of a molecule M is determined by those density domains which appear as separate

entities DD
"
(a, K ), DD

#
(a, K ), ¼ , DD

m
(a, K ) at this threshold. It is important to keep

in mind that, for a diŒerent threshold value a « , a diŒerent set of DDs and a diŒerent

set of functional groups might be identi® ed within the same molecule M ; however,

there are only ® nite number of topologically diŒerent DDs, and a complete accounting

of all possible functional groups is possible using only a ® nite number of density

thresholds. In the following discussion we shall consider just one density threshold a ;

however, the treatment can be extended easily for multiple thresholds. Note that the

functional groups F
"
, F

#
, ¼ , F

m
are identi® ed at a single threshold, but the cor-

responding fragment electron densities q
F"

(r), q
F#

(r), ¼ , q
Fm

(r) are not restricted to any

speci® c threshold value a.

By taking the nuclear set of serial index k for each fuzzy fragment density as the

nuclear set embedded in the corresponding DD
k
(a, K ) representing the functional

group F
k
, and by carrying out the fuzzy density fragmentation procedure, the electron

density contribution q k(r) of each functional group F
k

can be determined using the

AFDF scheme. The fuzzy fragment electron density contributions q
F"

(r), q
F#

(r), ¼ ,

q
Fk

(r), ¼ , q
Fm

(r) represent the formal `share ’ of each functional group F
k

within the

total macromolecular electron density q
M

(r). As a consequence of the exact additivity

of the M ulliken ± M ezey fragmentation scheme, the total electron density q
M

(r) of

molecule M is the sum of functional group electron densities at each point r :

q
M

(r) ¯ 3
k

q
Fk

(r) . (71)

One may consider the fragment electron density q
Fi

(r) of each individual functional

group F
k

as a separate individual fuzzy object within the fuzzy body q
M

(r) of the

macromolecule M .

4.5. Local shape analysis of isolated functional groups

Since molecular fragments are described by fuzzy electron densities analogous to

densities of complete molecules, the local shape analysis of functional groups follows

the same principles as the shape analysis of complete molecules. However, the

terminology `fragment isodensity contour ’ (FIDCO) surface is used instead of

M IDCO surface.

The notation F is used for the actual fragment or functional group selected for

study and M « denotes the rest of the macromolecule M . This fragment M « is possibly

composed from several fragments F
"
, F

#
, ¼ , F

m Õ "
, and the fragment F is assumed to

correspond to the last fragment in the series : F ¯ F
m

.
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Quantum chemistry of macromolecular shape 385

If the molecular density fragment F is regarded as an entity on which the in¯ uence

of the rest of the molecule is unimportant, then it is meaningful to generate contours

for F where the density threshold a is compared only with the actual fragment density

q
F
(r), and the FIDCOs themselves are not in¯ uenced by the additional density

contributions from the rest of the molecule.

In this case, a FIDCO for a fragment F in a molecule FM « is de® ned as follows:

G
F c M « (a) ¯ ² r : q

F
(r) ¯ a, q

F
(r) & q

Fk
(r), k ¯ 1, ¼ , m ® 1 ´ . (72)

The following two alternative de® nitions are equivalent to that given by equation (72) :

G
F c M « (a) ¯ G

F
(a) f ² r : q

F
(r) & q

Fk
(r), k ¯ 1, ¼ , m ® 1 ´ , (73)

and
G

F c M « (a) ¯ G
F
(a) c ² r : d k ` ² 1, ¼ , m ® 1 ´ : q

F
(r) ! q

Fk
(r) ´ . (74)

The FIDCO G
F c M « (a) of fragment F in macromolecule M ¯ FM « is the set of all

those points r where the electron density contribution q
F
(r) of fragment F is dominant

within the macromolecule FM « .
The series of such FIDCOs for a whole range of density thresholds a can be

analysed using the standard SGM, with one modi® cation : an additional domain type

D
Õ "

is introduced, representing the connection of fragment F to the rest of the molecule

within the actual FM « system :

D
Õ "

(G
F c M « (a)) ¯ ² r : r ` G

F
(a), d k ` ² 1, ¼ , m ® 1 ´ : q

F
(r) ! q

Fk
(r) ´ . (75)

It is only the boundary D D
Õ "

(G
F c M « (a)), de® ned as

D D
Õ "

(G
F c M « (a)) ¯ ² r : r ` G

F c M « (a), d k « ` ² 1, ¼ , m ® 1 ´ : q
F
(r) ¯ q

Fk «
(r),

q
Fk «

(r) & q
Fk

(r), k ¯ 1, ¼ , m ® 1 ´ , (76)

that can be found on the FIDCO G
F c M « (a), since the domain D

Õ "
(G

F c M « (a)) itself exists

only on the intact G
F
(a) contour surface. The actual formal domain D

Õ "
(G

F c M « (a))

appears only as `cover(s) ’ over the hole(s) of the FIDCO G
F c M « (a) in the macro-

molecule FM « .
A simpler representation of fragment F in molecule FM « is obtained if the

composite M « of all the remaining fragments F
"
, F

#
, ¼ , F

m Õ "
is used. This de ® nition of

contours is given as

G
F c R M « (a) ¯ ² r : q

F
(r) ¯ a, q

F
(r) & q

M « (r) ´ , (77)

where q
M « (r) denotes the composite density given by

q
M « (r) ¯ q

F"

(r) ­ q
F#

(r) ­ ¼ ­ q
Fm Õ "

(r). (78)

Within this approach, new local domains appear at locations where the connections

occur between the fragment F and the rest M « of the molecule FM « :

D
Õ "

(G
F c R M « (a)) ¯ ² r : r ` G

F
(a), q

F
(r) % q

M « (r) ´ . (79)

The boundaries of these additional domains are de® ned as

D D
Õ "

(G
F c R M « (a)) ¯ ² r : r ` G

F c R M « (a), q
F
(r) ¯ q

M « (r) ´ (80)

and can be computed by locating ® rst all points r where q
F
(r) ¯ q

M « (r).

4.6. Local shape analysis of interacting functional groups

If the interactions of various molecular fragments in a macromolecule FM « are of

interest, then the local shape analysis can no longer be carried out on an `isolated ’

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



386 P. G . M ezey

FIDCO G
F
(a). In order to account for these interactions, a new contour calculation is

required. The corresponding `interactive ’ FIDCO G
F (M « )

(a) is de® ned as

G
F (M « )

(a) ¯ ² r : q
F
(r) ­ q

M « (r) ¯ a, q
F
(r) & q

M « (r) ´ . (81)

No domains D
Õ "

(G
F (M « )

(a)) are de ® ned, since no surface is de® ned where a formal

`cover ’ of a domain representing a hole of the FIDCO G
F (M « )

(a) would be found.

Nevertheless, the notation D D
Õ "

(G
F (M « )

(a)) is used for the boundaries of the holes on

G
F (M « )

(a) :
D D

Õ "
(G

F (M « )
(a)) ¯ ² r : r ` G

F (M « )
(a), q

F
(r) ¯ q

M « (r) ´ . (82)

The computation and shape analysis of the interactive FIDCOs of a fragment F in

a macromolecule FM « require additional contour calculations; hence, this approach is

computationally more expensive than the shape analysis of the non-interactive

FIDCOs G
F c M « (a).

Using the additional domains or domain boundaries, the standard shape group

approach of electron density shape analysis is applicable, providing numerical shape

codes and shape similarity measures for functional groups and other local moieties of

macromolecules.

5. Summary

The AFDF methods provide the basic tools for an application of the SGMs to the

study of the global and local shape features of macromolecules. Complementing the

topological shape analysis techniques, the SWAT method provides a simple

approximate technique for the study of electron density deformations and the

associated shape changes accompanying small nuclear displacements.
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